3. Best MJ, Aziz KT, Wilckens JH, McFarland EG, Srikumaran U. Increasing incidence of primary reverse and anatomic total shoulder arthroplasty in the United States. J Shoulder Elbow Surg 2021;30:1159–66.
4. Weber S, Grehn H, Hutter R, Sommer C, Haupt S. Shoulder arthroplasty for proximal humeral fracture treatment: a retrospective functional outcome analysis. Eur J Orthop Surg Traumatol 2023;33:1581–9.
5. Na SS, Kim DH, Choi BC, Cho CH. Outcomes and complications after arthroplasty in patients with osteonecrosis of humeral head- systematic review. J Orthop Sci 2023;28:772–7.
7. Radnay CS, Setter KJ, Chambers L, Levine WN, Bigliani LU, Ahmad CS. Total shoulder replacement compared with humeral head replacement for the treatment of primary glenohumeral osteoarthritis: a systematic review. J Shoulder Elbow Surg 2007;16:396–402.
8. Bryant D, Litchfield R, Sandow M, Gartsman GM, Guyatt G, Kirkley A. A comparison of pain, strength, range of motion, and functional outcomes after hemiarthroplasty and total shoulder arthroplasty in patients with osteoarthritis of the shoulder: a systematic review and meta-analysis. J Bone Joint Surg Am 2005;87:1947–56.
9. Carroll RM, Izquierdo R, Vazquez M, Blaine TA, Levine WN, Bigliani LU. Conversion of painful hemiarthroplasty to total shoulder arthroplasty: long-term results. J Shoulder Elbow Surg 2004;13:599–603.
10. Leung B, Horodyski M, Struk AM, Wright TW. Functional outcome of hemiarthroplasty compared with reverse total shoulder arthroplasty in the treatment of rotator cuff tear arthropathy. J Shoulder Elbow Surg 2012;21:319–23.
11. Dines JS, Fealy S, Strauss EJ, et al. Outcomes analysis of revision total shoulder replacement. J Bone Joint Surg Am 2006;88:1494–500.
13. Peker B, Polat AE, Carkci E, Senel A, Soydan C, Tuzuner T. Functional outcomes and complication analysis of plate osteosynthesis versus hemiarthroplasty in three-part and four-part proximal humerus fractures. J Pak Med Assoc 2022;72:57–61.
15. Sperling JW, Cofield RH, Rowland CM. Minimum fifteen-year follow-up of Neer hemiarthroplasty and total shoulder arthroplasty in patients aged fifty years or younger. J Shoulder Elbow Surg 2004;13:604–13.
16. Cointat C, Raynier JL, Vasseur H, et al. Short-term outcomes and survival of pyrocarbon hemiarthroplasty in the young arthritic shoulder. J Shoulder Elbow Surg 2022;31:113–22.
17. Hirakawa Y, Ode GE, Le Coz P, et al. Poor results after pyrocarbon interpositional shoulder arthroplasty. J Shoulder Elbow Surg 2021;30:2361–9.
19. Mehta N, Hall DJ, Pourzal R, Garrigues GE. The biomaterials of total shoulder arthroplasty: their features, function, and effect on outcomes. JBJS Rev 2020;8:e1900212
20. Ramírez-Martínez I, Smith SL, Trail IA, Joyce TJ. Wear behaviour of polyethylene glenoid inserts against PyroCarbon humeral heads in shoulder arthroplasties. J Mech Behav Biomed Mater 2020;103:103553.
21. Stone MA, Noorzad AS, Namdari S, Abboud J. Prosthetic bearing surfaces in anatomic and reverse total shoulder arthroplasty. J Am Acad Orthop Surg 2021;29:414–22.
22. Edwards TB, Kadakia NR, Boulahia A, et al. A comparison of hemiarthroplasty and total shoulder arthroplasty in the treatment of primary glenohumeral osteoarthritis: results of a multicenter study. J Shoulder Elbow Surg 2003;12:207–13.
23. Somerson JS, Neradilek MB, Service BC, Hsu JE, Russ SM, Matsen FA 3rd. Clinical and radiographic outcomes of the ream-and-run procedure for primary glenohumeral arthritis. J Bone Joint Surg Am 2017;99:1291–304.
24. Somerson JS, Matsen FA 3rd. Functional outcomes of the ream-and-run shoulder arthroplasty: a concise follow-up of a previous report. J Bone Joint Surg Am 2017;99:1999–2003.
25. Getz CL, Kearns KA, Padegimas EM, Johnston PS, Lazarus MD, Williams GR Jr. Survivorship of hemiarthroplasty with concentric glenoid reaming for glenohumeral arthritis in young, active patients with a biconcave glenoid. J Am Acad Orthop Surg 2017;25:715–23.
26. Schoch B, Schleck C, Cofield RH, Sperling JW. Shoulder arthroplasty in patients younger than 50 years: minimum 20-year follow-up. J Shoulder Elbow Surg 2015;24:705–10.
27. Gadea F, Alami G, Pape G, Boileau P, Favard L. Shoulder hemiarthroplasty: outcomes and long-term survival analysis according to etiology. Orthop Traumatol Surg Res 2012;98:659–65.
29. Herschel R, Wieser K, Morrey ME, Ramos CH, Gerber C, Meyer DC. Risk factors for glenoid erosion in patients with shoulder hemiarthroplasty: an analysis of 118 cases. J Shoulder Elbow Surg 2017;26:246–52.
30. Parsons IM 4th, Millett PJ, Warner JJ. Glenoid wear after shoulder hemiarthroplasty: quantitative radiographic analysis. Clin Orthop Relat Res 2004;(421):120–5.
31. Hegyeli RJ. In: Artificial heart program conference. Proceedings; Washington, D.C.. June 9-13, 1969; National Institutes of Health. 1969;
32. Stanley J, Klawitter J, More R. Replacing joints with pyrolytic carbon. In: Revell PA, eds. Joint replacement technology. Elsevier; 2008. p. 631–56.
33. Black J, Hastings G. Handbook of biomaterial properties. Springer Science & Business Media; 2013.
34. Bokros JC. Carbon biomedical devices. Carbon 1977;15:353–71.
35. Ely JL, Emken MR, Accuntius JA, et al. Pure pyrolytic carbon: preparation and properties of a new material, On-X carbon for mechanical heart valve prostheses. J Heart Valve Dis 1998;7:626–32.
36. More RB, Haubold AD, Bokros JC. Pyrolytic carbon for long-term medical implants. In: Ratner B, Hoffman A, Schoen F, Lemons J, eds. Biomaterials science. Elsevier; 2013. p. 209–22.
37. Bellemère P. Pyrocarbon implants for the hand and wrist. Hand Surg Rehabil 2018;37:129–54.
38. Bokros JC. Deposition, structure, and properties of pyrolytic carbon. In: Walker PL, ed. Chemistry and physics of carbon. Vol. 5. Dekker; 1969. p. 1–118.
39. Kaae JL. The mechanism of the deposition of pyrolytic carbons. Carbon 1985;23:665–73.
40. Gilpin CB, Haubold AD, Ely JL. Fatigue crack growth and fracture of pyrolytic carbon composites. Bioceramics 1993;6:217–23.
41. Ma L, Sines G. Fatigue behavior of a pyrolytic carbon. J Biomed Mater Res 2000;51:61–8.
42. Haubold AD, More RB, Bokros JC. Carbons. In: Black J, Hastings G, eds. Handbook of biomaterial properties. Elsevier; 1998. p. 464–77.
43. More RB, et al. Pyrolytic carbon. In: Wnek GE, Bowlin GL, eds. Encyclopedia of biomaterials and biomedical engineering. CRC Press; 2004. p. 1308–19.
44. Haubold AD. On the durability of pyrolytic carbon in vivo. Med Prog Technol 1994;20:201–8.
45. Bokros J, et al. The durability of mechanical heart valve replacements: past experience and current trends. In: Bodnar E, Frater R, eds. Replacement cardiac valves. Pergamon Press; 1991. p. 21–48.
46. Schoen FJ. Carbons in heart valve prostheses: foundations and clinical performance. In: Szycher M, eds. Biocompatible polymers, metals, and composites. 1983. p. 240–61.
47. Lubowitz JH. Editorial Commentary: Shoulder arthroscopy, shoulder hemiarthroplasty, and total shoulder arthroplasty for glenohumeral osteoarthritis. Arthroscopy 2015;31:1167–8.
48. Pfahler M, Jena F, Neyton L, Sirveaux F, Molé D. Hemiarthroplasty versus total shoulder prosthesis: results of cemented glenoid components. J Shoulder Elbow Surg 2006;15:154–63.
49. Sandow MJ, David H, Bentall SJ. Hemiarthroplasty vs total shoulder replacement for rotator cuff intact osteoarthritis: how do they fare after a decade. J Shoulder Elbow Surg 2013;22:877–85.
50. Nho SJ, Nam D, Ala OL, Craig EV, Warren RF, Wright TM. Observations on retrieved glenoid components from total shoulder arthroplasty. J Shoulder Elbow Surg 2009;18:371–8.
51. Cook SD, Beckenbaugh R, Weinstein AM, Klawitter JJ. Pyrolite carbon implants in the metacarpophalangeal joint of baboons. Orthopedics 1983;6:952–61.
52. Hannoun A, Ouenzerfi G, Brizuela L, et al. Pyrocarbon versus cobalt-chromium in the context of spherical interposition implants: an in vitro study on cultured chondrocytes. Eur Cell Mater 2019;37:1–15.
53. Hussain N, Couzens G, Gilpin D, Ross M. Pyrocarbon PIPJ and MCPJ hemiarthroplasty. In: Proceedings of the 9th Congress of the International Federation of Societies for Surgery of the Hand; 2004 Jun 13-17; Budapest, Hungary. Medimond Publishing; 2004.
54. Klawitter JJ, Patton J, More R, Peter N, Podnos E, Ross M. In vitro comparison of wear characteristics of PyroCarbon and metal on bone: shoulder hemiarthroplasty. Shoulder Elbow 2020;12(1 Suppl):11–22.
55. Ross M, Williams D, Couzens G, Klawitter J. Pyrocarbon for joint replacement. In: Revell PA, eds. Joint replacement technology. Elsevier; 2021. p. 145–63.
56. Swanson AB. Silicone rubber implants for replacement of arthritis or destroyed joints in the hand. Surg Clin North Am 1968;48:1113–27.
57. Caudwell M, Bayne G, Page RS. Anatomic pyrocarbon hemiarthroplasty for thumb carpometacarpal osteoarthritis in patients under 65 years: mid term results. J Hand Surg Asian Pac Vol 2018;23:469–73.
58. Pettersson K, Amilon A, Rizzo M. Pyrolytic carbon hemiarthroplasty in the management of proximal interphalangeal joint arthritis. J Hand Surg Am 2015;40:462–8.
59. Vitale MA, Hsu CC, Rizzo M, Moran SL. Pyrolytic carbon arthroplasty versus suspensionplasty for trapezial-metacarpal arthritis. J Wrist Surg 2017;6:134–43.
60. Smeraglia F, Basso MA, Famiglietti G, Cozzolino A, Balato G, Bernasconi A. Pyrocardan® interpositional arthroplasty for trapeziometacarpal osteoarthritis: a minimum four year follow-up. Int Orthop 2022;46:1803–10.
61. Szalay G, Meyer C, Scheufens T, Schnettler R, Christ R, Schleicher I. Pyrocarbon spacer as a trapezium replacement for arthritis of the trapeziometacarpal joint; a follow-up study of 60 cases. Acta Orthop Belg 2013;79:648–54.
63. Tsitlakidis S, Doll J, Westhauser F, et al. Promising results after hemi-shoulder arthroplasty using pyrolytic carbon heads in young and middle-aged patients. Orthop Traumatol Surg Res 2021;107:102896.
64. Garret J, Godeneche A, Boileau P, et al. Pyrocarbon interposition shoulder arthroplasty: preliminary results from a prospective multicenter study at 2 years of follow-up. J Shoulder Elbow Surg 2017;26:1143–51.
65. Hudek R, Werner B, Abdelkawi AF, Gohlke F. Pyrocarbon interposition shoulder arthroplasty in advanced collapse of the humeral head. Orthopade 2017;46:1034–44.
66. McBride AP, Ross M, Hoy G, et al. Mid-term outcomes of pyrolytic carbon humeral resurfacing hemiarthroplasty compared with metal humeral resurfacing and metal stemmed hemiarthroplasty for osteoarthritis in young patients: analysis from the Australian Orthopaedic Association National Joint Replacement Registry. J Shoulder Elbow Surg 2022;31:755–62.
67. Pangaud C, Gonzalez JF, Galvin JW, Gauci MO, Boileau P. Fracture of pyrocarbon humeral head resurfacing implant: a case report. J Shoulder Elbow Surg 2020;29:e306–12.