1. Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning. Electron Mark 2021;31:685–95.
2. Bell J. What is machine learning? In: Carta S, ed. Machine learning and the city: applications in architecture and urban design. John Wiley and Sons; 2022. p. 207-16.
3. Nasteski V. An overview of the supervised machine learning methods. Horizons 2017;4:51–62.
4. Alloghani M, Al-Jumeily D, Mustafina J, Hussain A, Aljaaf AJ. A systematic review on supervised and unsupervised machine learning algorithms for data science. In: Berry M, Mohamed A, Yap B, eds. Supervised and unsupervised learning for data science. Springer; 2020. p. 3-21.
5. Naeem S, Ali A, Anam S, Ahmed MM. An unsupervised machine learning algorithms: comprehensive review. Int J Comput Digit Syst 2023;13:911–21.
7. Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM 2020;63:139–44.
8. Jovanovic M, Campbell M. Generative artificial intelligence: trends and prospects. IEEE 2022;55:107–12.
9. Arulkumaran K, Deisenroth MP, Brundage M, Bharath AA. Deep reinforcement learning: a brief survey. EEE Signal Process Mag 2017;34:26–38.
10. Sutton RS, Barto AG. Reinforcement learning: an introduction. MIT press; 1998.
11. Lapan M. Deep reinforcement learning hands-on: apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more. Packt Publishing; 2018.
12. Mahesh B. Machine learning algorithms: a review. Int J Sci Res 2020;9:381–6.
13. Chen T, He T, Benesty M, et al. Xgboost: extreme gradient boosting. R package version 04-2. R Foundation for Statistical Computing; 2015.
14. Muhamedyev RI. Machine learning methods: an overview. Comput Model NEW Technol 2015;19:14–29.
17. Sherstinsky A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D 2020;404:132306.
18. Floridi L, Chiriatti M. GPT-3: its nature, scope, limits, and consequences. Minds Mach 2020;30:681–94.
19. Došilović FK, Brčić M, Hlupić N. Explainable artificial intelligence: a survey. 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). IEEE; 2018.
20. Ying X. An overview of overfitting and its solutions. J Phys Conf Ser 2019;1168:022022.
21. Jabbar HK, Khan RZ. Methods to avoid over-fitting and under-fitting in supervised machine learning (comparative study). Comput Sci Commun Instrum Devices 2015;70:978–81.
22. Karlin EA, Lin CC, Meftah M, Slover JD, Schwarzkopf R. The impact of machine learning on total joint arthroplasty patient outcomes: a systemic review. J Arthroplasty 2023;38:2085–95.
23. Patel AV, Stevens AJ, Mallory N, et al. Modern applications of machine learning in shoulder arthroplasty: a review. JBJS Rev 2023;11:e22.00225.
24. Franceschetti E, Gregori P, De Giorgi S, et al. Machine learning can predict anterior elevation after reverse total shoulder arthroplasty: a new tool for daily outpatient clinic. Musculoskelet Surg 2024;108:163–71.
25. Kumar V, Roche C, Overman S, et al. Using machine learning to predict clinical outcomes after shoulder arthroplasty with a minimal feature set. J Shoulder Elbow Surg 2021;30:e225–36.
29. Kunze KN, Jang SJ, Li TY, et al. Artificial intelligence for automated identification of total shoulder arthroplasty implants. J Shoulder Elbow Surg 2023;32:2115–22.
32. Moulaei K, Yadegari A, Baharestani M, Farzanbakhsh S, Sabet B, Reza Afrash M. Generative artificial intelligence in healthcare: a scoping review on benefits, challenges and applications. Int J Med Inform 2024;188:105474.
34. Rodriguez HC, Rust B, Hansen PY, et al. Artificial intelligence and machine learning in rotator cuff tears. Sports Med Arthrosc Rev 2023;31:67–72.
35. Kim SH, Yoo HJ, Yoon SH, et al. Development of a deep learning-based fully automated segmentation of rotator cuff muscles from clinical MR scans. Acta Radiol 2024;65:1126–32.
36. Tonni G, Grisolia G. Simulator, machine learning, and artificial intelligence: time has come to assist prenatal ultrasound diagnosis. J Clin Ultrasound 2023;51:1164–5.
37. Lee K, Yang J, Lee MH, Chang JH, Kim JY, Hwang JY. USG-Net: deep learning-based ultrasound scanning-guide for an orthopedic sonographer. In: Proceedings of Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference; 2022 Sep 18-22; Singapore; 2022. p. 23-32.
38. Do WS, Shin SH, Lim JR, Yoon TH, Chun YM. Predicting the reparability of rotator cuff tears: machine learning and comparison with previous scoring systems. Am J Sports Med 2024;52:3512–9.
39. Cho SH, Kim YS. Prediction of retear after arthroscopic rotator cuff repair based on intraoperative arthroscopic images using deep learning. Am J Sports Med 2023;51:2824–30.
42. Silver JK, Dodurgali MR, Gavini N. Artificial intelligence in medical education and mentoring in rehabilitation medicine. Am J Phys Med Rehabil 2024;103:1039–44.
43. Sumner J, Lim HW, Chong LS, Bundele A, Mukhopadhyay A, Kayambu G. Artificial intelligence in physical rehabilitation: a systematic review. Artif Intell Med 2023;146:102693.
44. Li C, Alike Y, Hou J, et al. Machine learning model successfully identifies important clinical features for predicting outpatients with rotator cuff tears. Knee Surg Sports Traumatol Arthrosc 2023;31:2615–23.